Видимый годовой путь солнца. Видимое годовое движение солнца

Планеты по своим видимым движениям делятся на дне группы: нижние (Меркурий, Венера) и верхние (все остальные, кроме Земли).

Движения по созвездиям нижних и верхних планет различны. Меркурий и Венера всегда находятся на небе либо в том же созвездии, где и Солнце, либо в соседнем. При этом они могут находиться и к востоку и к западу от Солнца, но не дальше 18-28° (Меркурий) и 45-48° (Венера). Наибольшее угловое удаление планеты от Солнца к востоку называется ее наибольшей восточной элонгацией, к западу - наибольшей западной элонгацией. При восточной элонгации планета видна на западе, в лучах вечерней зари, вскоре после захода Солнца, и заходит через некоторое время после него.

Затем, двигаясь попятным движением (т.е. с востока к западу сначала медленно, а потом быстрее, планета начинает приближаться к Солнцу, скрывается в его лучах и перестает быть пилимой. В это время наступает нижнее соединение планеты с Солнцем; планета проходит между Землей и Солнцем. Эклиптические долготы Солнца и планеты равны. Спустя некоторое время после нижнего соединения планета становится снова видимой, но теперь уже на востоке, в лучах утренней зари, незадолго перед восходом Солнца. В это время она продолжает двигаться попятным движением, постепенно удаляясь от Солнца. Замедлив скорость попятного движения и достигнув наибольшей западной элонгации, планета останавливается и меняет направление своего движения на прямое. Теперь она движется с запада на восток, сначала медленно, затем быстрее. Удаление ее от Солнца уменьшается, и, наконец, она скрывается в утренних лучах Солнца. В это время планета проходит за Солнцем, эклиптические долготы обоих светил снова равны - наступает верхнее соединение планеты с Солнцем, после которого спустя некоторое время она снова видна на западе в лучах вечерней зари. Продолжая двигаться прямым движением, она постепенно замедляет свою скорость.

Достигнув предельного восточного удаления, планета останавливается, меняет направление своего движения на попятное, и все повторяется сначала. Таким образом, нижние планеты совершают как бы “колебания” около Солнца, как маятник около своего среднего положения.

Положения планет относительно Солнца, описанные выше, называются конфигурациями планет.

7.2. Объяснение конфигураций и видимых движений планет

При своем движении по орбитам планеты могут занимать различные положения относительно Солнца и Земли. Пусть в некоторый момент (рис. 24) Земля Т занимает на своей орбите некоторое положение относительно Солнца С. Нижняя или верхняя планета может находиться в этот момент в любой точке своей орбиты.

Если нижняя планета V находится в одной из четырех указанных на чертеже точек V 1 , V 2 , V 3 или V 4 , то она видна с Земли в нижнем (V 1) или в верхнем (V 3) соединении с Солнцем, в наибольшей западной (V 2) или в наибольшей восточной (V 4) элонгации. Если верхняя планета М находится в точках М 1 , М 2 , М 3 или М 4 своей орбиты, то она видна с Земли в противостоянии (М 1) , в соединении (M 3) , в западной (М 2) или в восточной (М 4) квадратуре.

Суть объяснения прямых и попятных движений планет заключается в сопоставлении орбитальных линейных скоростей планеты и Земли.

Когда верхняя планета (рис. 25) находится около соединения (M 3) , то ее скорость направлена в сторону, противоположную скорости Земли (Т 3). С Земли планета будет казаться движущейся прямым движением, т.е. в сторону ее действительного движения, справа налево. При этом скорость ее будет казаться увеличенной. Когда верхняя планета находится около противостояния (M 1) , то ее скорость и скорость Земли направлены в одну сторону. Но линейная скорость Земли больше линейной скорости верхней планеты, и поэтому с Земли планета будет казаться движущейся в обратную сторону, т.е. попятным движением, слева направо.


Подобные же рассуждения объясняют, почему нижние планеты (Меркурий и Венера) около нижнего соединения (V 1) движутся среди звезд попятным движением, а около верхнего соединения (V 3) - прямым движением (рис. 26).

Видимое годовое движение Солнца

Земля, как и другие планеты солнечной системы, движется по орбите вокруг центрального тела системы – Солнца (среднее расстояние » 149,6 млн. км).

Ось Земли наклонена к плоскости ее орбиты на постоянный угол 66°33¢, чем объясняется смена времен года. На рис. 3.9, в центре которого находится Солнце С, показаны четыре положения Земли на ее орбите.

В положении I (21 марта) Солнце проектируется на экватор, оба полушария в течение полуоборота Земли освещены одинаково, от полюса до полюса. Во всех широтах день равен ночи. В северном полушарии весна.

В положении II (22 июня) Солнце проектируется на параллель ab с j=23°27¢N (Северный тропик), в северном полушарии лето, длинный день и короткая ночь.

В положении III (23 сентября) Солнце вновь проектируется на экватор, день и ночь везде равны. В северном полушарии осень.

В положении IV (22 декабря) Солнце проектируется на параллель cf = 23°27¢S (Южный тропик), в северном полушарии зима, короткий день и длинная ночь.

Если, находясь на Земле, наблюдатель будет в течение года наблюдать за Солнцем, то ему будет казаться, что не Земля вращается вокруг Солнца, а наоборот, это светило перемещается по большому кругу небесной сферы. Этот круг носит название эклиптики. В среднем за сутки Солнце проходит по эклиптике дугу в 1°.

Из положения I наблюдатель видит Солнце на сфере в точке Овна ¡, называемой точкой весеннего равноденствия (пересечение небесного экватора с эклиптикой под углом 23°27¢). Склонение Солнца равно 0°. Из положения II Солнце проектируется на сферу в точку летнего солнцестояния. Склонение Солнца равно 23°27¢N. В положении наблюдателя III Солнце усматривается в точке Весов, или точке осеннего равноденствия. Склонение Солнца опять равно 0° оно переходит в южное полушарие. Из положения IV Солнце проектируется в точку зимнего солнцестояния, его склонение равно 23°27¢S.

Дуга экватора, заключенная между точкой весеннего равноденствия и меридианом светила, называемая прямым восхождением светила. Прямое восхождение обозначается буквой a и считается от 0° до 360° в сторону, противоположную суточному движению. Вместо прямого восхождения часто удобнее применять звездное дополнение t = 360 - a.

У звезд, не имеющих собственного (годового) движения, прямое восхождение в течение года будет оставаться почти неизменным, очевидно, что Солнце должно изменять прямое восхождение в течение года на 360°, изменяясь в течение суток на величину немного менее 1°.

Прямое восхождение обычно выражается в часах (360° = 24 час.; 1 час = 15°; 1° = 4 мин. и т.д.); 21 марта a = 0 час.; 22 июня – 6 час. (90°); 23 сентября – 12 час. (180°); 22 декабря – 18 час. (270°).

Кеплер вывел законы движения планет, а Ньютон объяснил причину планетных движений своим знаменитым законом всемирного тяготения.

«Всякая частица материи притягивается всякой другой частицей с силой, прямо пропорциональной произведению масс частиц и обратно пропорциональной квадрату их взаимного расстояния».

Следствием этого закона являются три закона Кеплера:

1-й закон. Все планеты обращаются вокруг Солнца по эллипсам, в одном из фокусов которого находится Солнце.

2-й закон. Прямая, соединяющая планету с Солнцем, описывает равные площади в равные промежутки времени.

3-й закон. Квадраты периодов обращения планет пропорциональны кубам их средних расстояний от Солнца.

Допустим, что эллипс adcdef (рис. 3.10.) представляет собой орбиту Земли. Солнце находится в фокусе S. Ближайшая к Солнцу точка А называется перигелием, а наиболее отдаленная В – афелием.

В перигелии Земля бываем 2¸5 января, в афелии 1¸4 июля. В разных точках орбиты Земля движется с различной скоростью; относительная скорость Земли определяется вторым законом Кеплера. Заштрихованные участки Sab, Scd, пройденные прямой, соединяющей Солнце и Землю, равны по площади, как описанные в равные промежутки времени; отсюда делаем заключение, что с наибольшей угловой и линейной скоростью Земля движется в перигелии (61,2¢), наименьшей – в афелии (57,2¢ в сутки).

Понятие о прецессии. Из механики известно, что ось свободного гироскопа сохраняет неизменное положение в мировом пространстве.

Если же к гироскопу приложить внешнюю силу, у оси гироскопа появится движение, которое называется прецессионным. Особенность этого движения заключается в том, что ось гироскопа движется не в направлении приложенной силы, а в направлении, перпендикулярном к ней (рис. 3.11.).

Землю можно рассматривать подобной гироскопу. На Землю действуют силы притяжения Луны и Солнца, которые вызывают прецессионное движение земной оси. Своим прецессионным движением земная ось, а следовательно, и ось мира, описывают около неподвижной оси эклиптики коническую поверхность.

Сферический радиус кругов, описываемых полюсами мира и полюсами Земли, равен 23°27¢.

Обращение оси мира около эклиптики влечет за собой перемещение на небесной сфере и экватора. Экватор, пересекая эклиптику перемещает точки равноденствий навстречу собственному годовому движению Солнца. Из наблюдений выяснено, что движение это очень медленное, около 50¢¢,2 в год.

Следовательно, точка весеннего равноденствия передвигается навстречу Солнцу за год на 50¢¢,2.

Полный период обращения оси мира около неподвижной оси эклиптики произойдет через 360°: 50¢¢,2 = 25 800 лет.

Описанное явление называется прецессией, что означает "предварение". Предварение равноденствия – Солнце приходит в точку ¡ раньше, чем опишет полный круг по эклиптике, так как точка весеннего равноденствия передвинется на 50¢¢,2 навстречу годовому движению Солнца.

Прецессия вызывает изменение склонений, долгот и прямых восхождений звезд. Вследствие перемещения полюсов роль Полярной звезды (ближайшей к полюсу) в разные эпохи выполняют разные звезды.

В настоящее время ближайшая к полюсу звезда a Малой Медведицы (a Ursae Minoris); 4000 лет назад название Полярной звезды должна была иметь звезда созвездия Дракона (a Draconis). Через 6000 лет Полярной звездой будет a Cephei.

Обозначение точки весеннего равноденствия знаком Овна ¡ и осеннего равноденствия знаком Весов W сохранилось старое.

В этих созвездиях находились точки равноденствий во II веке до нашей эры. С того времени точки равноденствий переместились на 50¢¢,2 х 2150 лет = 30° и находятся: точка весеннего равноденствия в созвездии Рыб и точка осеннего равноденствия – в созвездии Девы.

Звездный год – время, в течение которого Солнце описывает эклиптику. Звездный год равен 365,25637 средним суткам.

Тропический год – промежуток времени, за который Солнце, двигаясь по эклиптике, вновь займет первоначальное положение относительно точки весеннего равноденствия. Вследствие прецессии точка весеннего равноденствия перемещается на 50¢¢,2 навстречу годовому движению Солнца, а поэтому тропический год короче звездного и равен 365,2422 средним суткам.

Гражданский год – 3 года считаются простыми по 365 средних суток, четвертый високосный – 366 суток. При таком летосчислении каждые четыре года будет накапливаться ошибка:

(365 х 3 + 366) – 365,2422 х 4 = 0,03112 суток.

За 400 лет гражданский календарь (Юлианский, или старый стиль) отстает на 3,112 суток. Чтобы избежать ошибки на протяжении 400 лет, три каких-либо високосных года надо считать простыми. Принято простыми годами считать те годы, кратные 100, число сотен в номере которых не делится на 4. Например, 1700, 1800, 1900, 2100, 2200 – годы простые, 1600, 2000, 2400 – високосные.

При таком счете ошибка в календаре за 400 лет достигает всего 0,112 суток, следовательно, ошибка в одни сутки – через 3600 лет. Такой способ летосчисления называется григорианским календарем или новым стилем . Он был введен в странах Западной Европы в 1582 г.

Уже несколько столетий Солнце проходит по зодиакальным созвездиям совсем не в то время, которое значится в таблицах древних астрономов:

В период с 29 ноября по 18 декабря (т.е. в течение 20 дней) Солнце находится в созвездии Змееносца (тринадцатое).

В поясе Зодиака располагаются также орбиты Луны и большинства планет.

Движение Солнца по эклиптике называется видимым годовым движением. То, что Солнце, кроме суточного, имеет свое собственное годовое движение, является причиной изменения его координат – склонения dQ и прямого восхождения aQ.

Так как Солнце движется по эклиптике неравномерно, а также из-за наклона эклиптики к экватору суточные изменения aQ в течение года колеблются от 53¢,8 до 66¢,6. В среднем DaQ = 1°, или 4 м. Суточное изменение dQ колеблется в течение года от 0 до 0°,4. Наибольшая скорость изменения склонения соответствует дням равноденствия, а наименьшая – солнцестояния. Принимают, что DdQ в среднем составляет 0°,4 за месяц до и после равноденствия; 0°,3 – во второй месяц до и после равноденствий; 0°,1 – за месяц до и после солнцестояний. При пересечении Солнцем экватора меняется наименование dQ .

Кроме собственного годового движения, Солнце, как и все светила, имеет суточное движение, которое является следствием вращения Земли вокруг своей оси. Совместное годовое и суточное движение Солнца происходит по спирали.

Крайнюю северную параллель – тропик Рака – Солнце опишет 22.VI, после чего начнет вновь приближаться к экватору. После 23.IX Солнце переходит в южное полушарие. Крайнюю южную параллель, называемую тропиком Козерога, оно опишет 22.XII.

Заметим, что из-за наличия у Солнца собственного годового движения, направленного против суточного, промежуток времени между двумя последовательными одноименными кульминациями Солнца на меридиане наблюдателя приблизительно на 4 мин больше, чем у неподвижных звезд. Действительно, за одни сутки Солнце отходит в собственном движении назад на 1° (4 м) и, следовательно для завершения полного оборота в суточном движении требуется такое же дополнительное время.

Изменение склонения Солнца от 23°27¢N до 23°27¢S приводит к тому, что на протяжении года в данном месте Земли ежедневно изменяются точки восхода и захода Солнца, продолжительность пребывания его над горизонтом и меридиональные высоты. Эти явления зависят от соотношения между широтой наблюдателя j и склонением Солнца d. В различных широтах возможные соотношения j и d будут разными, что определяет особенности в движении Солнца и, как следствие, климатические особенности на поверхности Земли. По последнему признаку земной шар разделен на тропический, умеренные и полярные пояса (j = 66°33¢N или S называются Северным или Южным полярным кругом).

Видимое движение Луны и Планет

Луна вращается вокруг Земли по эллиптической орбите, совершая в собственном движении полный оборот за один месяц (среднее расстояние » 385 тыс. км). Плоскость ее орбиты составляет с плоскостью эклиптики угол, равный 5°08¢. В течение суток Луна перемещается по орбите против суточного вращения сферы примерно на 13,2°. Поэтому суточное изменение прямого восхождения a составляет в среднем 13,2° и колеблется от » 10° до » 17° в сутки; суточные изменения склонения d колеблются от долей градуса до » 7°, а наибольшее изменение за месяц достигает » 5-7°. Вследствие влияния Земли период обращения Луны вокруг Земли примерно равен периоду вращения ее вокруг оси и поэтому Луна к Земле обращена одной стороной. Кроме собственного движения, у Луны, как и у всех светил, наблюдается суточное движение, являющееся следствием вращения Земли вокруг своей оси. Совместное собственное и суточное движение Луны происходит по спиралям.

Так как за одни сутки Луна отходит в собственном движении назад, против суточного движения, на 13,2°, то моменты кульминации Луны по отношению к звездам ежесуточно запаздывают на 53 мин. Ежесуточное отставание Луны от Солнца составляет 12,2°, и, следовательно, период одного суточного оборота Луны вокруг Земли на 49 мин больше, чем у Солнца.

Промежуток времени, в течение которого Луна совершает в собственном движении полный оборот по орбите относительно неподвижных звезд, называют звездным или сидерическим месяцем. Его продолжительность составляет » 27,32 сут.

Промежуток времени, в течение которого Луна совершает полный оборот относительно Солнца, также имеющего собственное движение, называется лунным или синодическим месяцем. Его продолжительность » 29,53 сут.

Фазы и возраст Луны. Луна – темное тело и способно лишь отражать свет солнечных лучей. В зависимости от положения Луны по отношению к Земле и Солнцу наблюдатель будет видеть большую или меньшую часть освещенной поверхности Луны. Поэтому принято говорить, что Луна находится в различных фазах (рис. 3.12.), граница освещенности называется терминатором.

Различают четыре основные фазы Луны:

· новолуние: Луна в положении Л 1 ; Солнце освещает ее обратную сторону, земной наблюдатель Луны не видит;

· первая четверть: Луна в положении Л 3 ; наблюдатель видит полудиск, обращенный выпуклостью вправо;

· полнолуние: Луна в положении Л 5 ; наблюдатель видит вест диск;

· последняя четверть: Луна в положении Л 7 ; наблюдатель видит полудиск, обращенный выпуклостью влево.

Луна проходит через все фазы за 29,53 сут. Количество дней, прошедших от новолуния до данной фазы, называют возрастом Луны (В). В ежедневных таблицах МАЕ на каждый день года указывается возраст Луны с точностью до 0 д,1, а фазы изображаются для трехсуточного интервала одним из восьми различных значков, показывающих величину освещенной части лунного диска.

Фазы новолуние и полнолуние в судовождении называют также сизигиями (В » 0 и 15), а фазы первой и последней четверти – квадратурами (В » 7 и 22).

Взаимным движением Луны вокруг Земли, а Земли вокруг Солнца объясняется возможность лунных и солнечных затмений.

И Земля и Луна, как тела темные, отбрасывают от себя в мировое пространство конус тени. Очевидно, что конус тени Земли будет значительно больше конуса тени Луны (диаметр Луны примерно равен ¼ диаметра Земли).

Затмение Луны бывает тогда, когда Луна в своем собственном движении попадает в конус тени Земли (фаза полнолуния).

Затмение Солнца бывает тогда, когда конус тени Луны покрывает тот или иной участок Земли (фаза новолуния).

Рис. 3.13 поясняет простейшие из возможных лунных и солнечных затмений. S – солнечные лучи, конус лунной тени покрывает участок Земли ab, L – положение Луны в конусе тени Земли.

Как видно из рисунка солнечное затмение может наблюдаться лишь на небольшом участке земной поверхности; затмение же Луны видно для наблюдателей всего земного полушария, обращенного к Луне.

Если бы плоскость орбиты Луны всегда совпадала с плоскостью земной орбиты и при этом расстояние Луны от Земли оставалось неизменным, то каждое полнолуние мы наблюдали бы затмение Луны, а каждое новолуние ряд наблюдателей мог бы видеть затмение Солнца.

В действительности такое положение является для взаимного движения этих светил только частным случаем и относительно редким. Вообще же орбиты Луны и Земли не совпадают (угол наклона 5°8¢), а расстояния до Луны колеблются от 59 до 61 земного радиуса.

Поэтому в общем случае солнечное и лунное затмения – явления очень сложные и имеют разнообразную форму. Их может и вовсе не быть, если Луна проходит вне конуса тени Земли, а конус тени Луны не попадает на Землю. Солнечное затмение может быть полным, но может быть и частичным, когда только часть солнечного диска будет покрыта тенью Луны; оно может быть и кольцевым, когда тень Луны закроет только центральную часть солнечного диска, и внешние его края останутся освещенными.

Видимое движение планет по небесной сфере

Планеты, обращающиеся подобно Земле вокруг Солнца, будут иметь видимые перемещения, отсюда они и получили свое название «блуждающие звезды».

Планеты, орбиты которых лежат внутри земной, называются нижними планетами и могут занимать следующие характерные относительно Земли положения (рис. 3.14): нижнее соединение (точка а) между Солнцем и Землей; верхнее соединение (точка b) "за Солнцем". Элонгация (западная в точке с и восточная в точке d) – это наибольшее угловое удаление планеты от Солнца (для Венеры не более 48°, Меркурия 28°).

Рис. 3.14. Рис. 3.15.

Планеты, орбиты которых лежат вне орбиты Земли, называются верхними планетами и могут занимать следующие положения (рис. 3.14.): противостояние n¢, когда Земля находится между Солнцем и планетой (если расстояние минимально, противостояние называется великим); соединение b¢, когда планета находится «за Солнцем»; квадратуры К и К¢, когда разность долгот Солнца и планеты равна 90°.

Если по результатам наблюдений получить a и d планеты и нанести ее видимый путь на сферу или карту, то получим кривую, близкую к эклиптике, но имеющую более сложный характер, часто с петлями и зигзагами.

Видимое движение планет по сфере объясняется движением их по орбитам в одну и ту же сторону, но с различными скоростями. При движении нижней планеты ее освещенная часть то поворачивается к Земле, то от Земли, т.е. планета аналогично Луне видна в различных фазах; у верхних планет смены фаз не наблюдается.

Для морских наблюдений используются только четыре наиболее яркие планеты: Венера, Марс, Юпитер и Сатурн. Яркости и условия видимости этих так называемых "навигационных" планет меняются в зависимости от расстояния до Земли, фазы Венеры и положения их на сфере.

Нижняя планета Венера в верхнем и нижнем соединениях теряется в лучах Солнца и с Земли не видна. В положении с – западной элонгации – Венера видна утром перед восходом Солнца; в восточной элонгации d – вечером перед заходом Солнца. Наибольшей яркости – около –4 m ,2 – Венера достигает в фазе 0,25, когда видна четверть диска, так как в этом положении она находится значительно ближе к Земле, чем в фазе полного диска.

Наиболее яркие планеты – Венера и Юпитер – видны на небе даже при Солнце, но только в астрономическую трубу секстана. В это время можно осуществить определение места по одновременным наблюдениям, например, Венеры и Солнца.

Верхние планеты – Марс, Юпитер и Сатурн – бывают невидимы только вблизи соединения, когда они теряются в лучах Солнца. Яркости этих планет меняются в широких пределах. Так, Марс имеет обычно яркость около 1 m , а во время великого противостояния яркость его возрастает до – 2 m ,5. Яркость Юпитера колеблется от – 2,5 до – 1 m ,5.

"Навигационные" планеты можно опознать сравнительно легко. Венера всегда близка к Солнцу, поэтому видима лишь как яркая белая "вечерняя или утренняя звезда". Марс имеет красновато- оранжевый цвет, Юпитер – желтоватый, а Сатурн – белый. Для всех планет характерно отсутствие мерцания, заметного даже у самых ярких звезд. Условия видимости планет на каждый месяц данного года указаны в ежегодниках.

Измерение времени

Время обладает важной особенностью – необратимостью, поэтому для его измерения можно применить только периодические природные процессы, длительность которых достаточно постоянна. Издавна человеку казалось наиболее постоянным движение небесных тел, по периодам в этих движениях и были установлены основные единицы измерения времени. Суточное движение звезд и Солнца дало единицу "сутки" и доли суток – часы, минуты, секунды"; месячное движение Луны – единицу "месяц" и годовое движение Солнца – "год".

Кроме движения светил, для измерения времени можно применить постоянные физические колебательные процессы в веществах. В настоящее время используются: колебательный процесс, возникающий в пластинах кварца под воздействием электрического поля и реализованный в кварцевых часах, и колебательные процессы, происходящие в молекулах и атомах, обладающие высокой стабильностью и реализованные в атомных часах.

Издавна люди наблюдали на небе такие явления как видимое вращение звездного неба, смена фаз Луны, восход и заход небесных светил, видимое движение Солнца по небу в течение дня, солнечные затмения, изменение высоты Солнца над горизонтом в течение года, лунные затмения.

Было ясно, что все эти явления связаны, прежде всего, с движением небесных тел, характер которого люди пытались описать при помощи простых визуальных наблюдений, правильное понимание и объяснение которых складывалось веками. После признания революционной гелиоцентрической системы мира Коперника, после того как Кеплер сформулировал три закона движения небесных тел и разрушил многовековые наивные представления о простом круговом движении планет вокруг Земли, доказал расчетами и наблюдениями, что орбиты движения небесных тел могут быть только эллиптическими, стало наконец ясно, что видимое движение планет складывается из:

1) перемещения наблюдателя по поверхности Земли;

2) вращения Земли вокруг Солнца;

3) собственных движений небесных тел.

Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово "планета" в переводе с древнегреческого означает "блуждающая" или "бродяга".

Траектория движения небесного тела называется его орбитой . Скорости движения планет по орбитам убывают с удалением планет от Солнца. Характер движения планеты зависит от того, к какой группе она принадлежит.

Поэтому по отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Юпитер, Сатурн, Уран, Нептун, Плутон), или соответственно, по отношению к Земной орбите, на нижние и верхние.

Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне. Наибольшее угловое удаление планеты от Солнца называется элонгацией . Наибольшая элонгация у Меркурия – 28°, у Венеры – 48°. Плоскости орбит всех планет Солнечной системы (кроме Плутона) лежат вблизи плоскости эклиптики, отклоняясь от нее: Меркурий на 7њ , Венера на 3,5њ; у других наклон еще меньше.

При восточной элонгации внутренняя планета видна на западе, в лучах вечерней зари, вскоре после захода Солнца. При западной элонгации внутренняя планета видна на востоке, в лучах утренней зари, незадолго до восхода Солнца. Внешние же планеты могут находиться на любом угловом расстоянии от Солнца.

Угол фазы Меркурия и Венеры изменяется в пределах от 0° до 180°, поэтому Меркурий и Венера сменяют фазы так же, как и Луна. Около нижнего соединения обе планеты имеют наибольшие угловые размеры, но выглядят, как узкие серпы. При угле фазы ψ = 90°, освещается половина диска планет, фаза Φ = 0,5. В верхнем соединении нижние планеты освещены полностью, но плохо видны с Земли, так как находятся за Солнцем.

Итак, при наблюдениях с Земли на движение планет вокруг Солнца накладывается еще и движение Земли по своей орбите, планеты перемещаются по небосводу то с востока на запад (прямое движение), то с запада на восток (попятное движение). Моменты смены направления называются стояниями . Если нанести этот путь на карту, получится петля . Размеры петли тем меньше, чем больше расстояние между планетой и Землей. Планеты описывают петли, а не просто движутся туда-сюда по одной линии исключительно из-за того, что плоскости их орбит не совпадают с плоскостью эклиптики. Такой сложный петлеобразный характер был впервые замечен и описан на примере видимого движения Венеры (рисунок 1).



Рисунок 1 – «Петля Венеры».

Известен факт, что движение определенных планет можно наблюдать с Земли только в строго определенное время года, это связано с их положением с течением времени на звездном небе.

Характерные взаимные расположения планет относительно Солнца и Земли называются конфигурациями планет. Конфигурации внутренних и внешних планет различны: у нижних планет это соединения и элонгации (наибольшее угловое отклонение орбиты планеты от орбиты Солнца), у верхних планет это квадратуры, соединения и противостояния.

Поговорим конкретнее о каждом из видов конфигураций: конфигурации, при которых внутренняя планета, Земля и Солнце выстраиваются по одной линии, называются соединениями (рис. 2).



Рис. 2. Конфигурации планет:
Земля в верхнем соединении с Меркурием,
в нижнем соединении с Венерой и в противостоянии с Марсом

Если А - Земля, В - внутренняя планета, С - Солнце, небесное явление называется нижним соединением . В "идеальном" нижнем соединении происходит прохождение Меркурия или Венеры по диску Солнца.

Если А - Земля, В - Солнце, С - Меркурий или Венера, явление называется верхним соединением . В "идеальном" случае происходит покрытие Солнцем планеты, которое, конечно, не может наблюдаться из-за несравнимой разницы в блеске светил.

Для системы Земля - Луна - Солнце в нижнем соединении происходит новолуние, в верхнем соединении - полнолуние.

Предельный угол между Землей, Солнцем и внутренней планетой называется наибольшим удалением или элонгацией и равен: для Меркурия - от 17њ30" до 27њ45" ; для Венеры - до 48њ. Внутренние планеты могут наблюдаться только вблизи Солнца и только по утрам или вечерам, перед восходом или сразу после захода Солнца. Видимость Меркурия не превышает часа, видимость Венеры - 4 часов (рис. 3).

Рис. 3. Элонгация планет

Конфигурация, при которой Солнце, Земля и внешняя планета выстраиваются на одной линии, называется (рис. 2):

1) если А - Солнце, В - Земля, С - внешняя планета - противостоянием;

2) если А - Земля, В - Солнце, С - внешняя планета - соединением планеты с Солнцем.

Конфигурация, в которой Земля, Солнце и планета (Луна) образуют в пространстве прямоугольный треугольник, называется квадратурой: восточной при расположении планеты в 90њ к востоку от Солнца и западной при расположении планеты в 90њ к западу от Солнца.

Движение внутренних планет на небесной сфере сводится к их периодическому отдалению от Солнца вдоль эклиптики то к востоку, то к западу на угловое расстояние элонгации.

Движение внешних планет на небесной сфере носит более сложный петлеобразный характер. Скорость видимого движения планеты неравномерна, поскольку ее величина определяется векторной суммой собственных скоростей Земли и внешней планеты. Форма и размеры петли планеты зависит от скорости планеты по отношению к Земле и наклона планетной орбиты к эклиптике.

Теперь введем понятие конкретных физических величин, характеризующих движение планет и позволяющих произвести некоторые расчеты: Сидерическим (звездным) периодом обращения планеты называется промежуток времени Т, за который планета совершает один полный оборот вокруг Солнца по отношению к звездам.

Синодическим периодом обращения планеты называется промежуток времени S между двумя последовательными одноименными конфигурациями.

Для нижних (внутренних) планет:

Для верхних (внешних) планет:

Продолжительность средних солнечных суток s для планет Солнечной системы зависит от сидерического периода их вращения вокруг своей оси t, направления вращения и сидерического периода обращения вокруг Солнца Т.

Для планет, обладающих прямым направлением вращения вокруг своей оси (тем же, в котором они движутся вокруг Солнца):

Для планет, обладающих обратным направлением вращения (Венера, Уран):

Формулы связи синодического и сидерического периодов выводят по аналогии с движением часовых стрелок. Аналогией синодического периода S будет промежуток времени между совпадениями часовой и минутной стрелок, аналогией сидерических - периоды вращения часовой стрелки (Т 1 = 12 ч) и минутной стрелки (Т 2 = 1 ч). Стрелки встречаются вновь в разных местах циферблата. Их угловые скорости равны.

Отображают лишь их видимые, то есть кажущиеся земному наблюдателю движения. При этом любые движения светил по небесной сфере не являются связанными с суточным вращением Земли, поскольку последнее воспроизводится вращением самой небесной сферы.

Энциклопедичный YouTube

  • 1 / 5

    Когда Солнце находится в точке весеннего равноденствия , его прямое восхождение и склонение равны нулю. С каждым днём прямое восхождение и склонение Солнца увеличиваются, и в точке летнего солнцестояния прямое восхождение становится равным 90° (6 h), а склонение достигает максимального значения +23°26′. Далее, прямое восхождение продолжает увеличиваться, а склонение уменьшается, и в точке осеннего равноденствия они принимают значения 180° (12 h) и 0°, соответственно. После этого, прямое восхождение по-прежнему увеличивается и в точке зимнего солнцестояния становится равным 270° (18 h), а склонение достигает минимального значения −23°26′, после чего вновь начинает расти.

    Верхние и нижние планеты

    В зависимости от характера движения по небесной сфере, планеты делятся на две группы: нижние (Меркурий, Венера) и верхние (все остальные планеты, кроме Земли). Это исторически сохранившаяся терминология; также используются более современные термины - внутренние и внешние (по отношению к орбите Земли) планеты.

    Во время видимого движения нижних планет у них происходит смена фаз, как у Луны :34-35 . При видимом движении верхних планет смены фаз у них не происходит, они всё время повёрнуты к земному наблюдателю своей освещённой стороной. Если же наблюдатель, например, АМС , находится, скажем, не на Земле, а за орбитой Сатурна , то кроме смены фаз у Меркурия и Венеры, он сможет наблюдать смену фаз у Земли, Марса, Юпитера и Сатурна.

    Движение нижних планет

    В своём движении по небесной сфере Меркурий и Венера никогда не уходят далеко от Солнца (Меркурий - не дальше 18° - 28°; Венера - не дальше 45° - 48°) и могут находиться либо к востоку, либо к западу от него. Момент наибольшего углового удаления планеты к востоку от Солнца называется восточной или вечерней элонгацией ; к западу - западной или утренней элонгацией .

    При восточной элонгации планета видна на западе вскоре после захода Солнца. Двигаясь с востока на запад, то есть попятным движением , планета сначала медленно, а потом быстрее, приближается к Солнцу, пока не скрывается в его лучах. Этот момент называется нижним соединением (планета проходит между Землёй и Солнцем). Спустя некоторое время её становится видно на востоке незадолго до восхода Солнца. Продолжая попятное движение, она достигает западной элонгации, останавливается и начинает двигаться с запада на восток, то есть прямым движением , догоняя Солнце. Догнав его, она снова становится невидимой - наступает верхнее соединение (в этот момент Солнце оказывается между Землёй и планетой). Продолжая прямое движение, планета вновь достигает восточной элонгации, останавливается и начинает попятное движение - цикл повторяется.

    Движение верхних планет

    У верхних планет также чередуются прямое и попятное движение. Когда верхняя планета видна на западе вскоре после захода Солнца, она движется по небесной сфере прямым движением, то есть в ту же сторону, что и Солнце. Однако скорость движения верхней планеты по небесной сфере всегда меньше, чем у Солнца, поэтому наступает момент, когда оно догоняет планету - происходит соединение планеты с Солнцем (последнее оказывается между Землёй и планетой). После того, как Солнце обгонит планету, её становится видно на востоке, перед восходом Солнца. Скорость прямого движения постепенно уменьшается, планета останавливается и начинает перемещаться среди звёзд с востока на запад, то есть попятным движением. В середине дуги своего попятного движения планета находится в точке небесной сферы, противоположной той, где в этот момент находится Солнце. Это положение называется

    Все, что выходит за рамки геометрии,
    выходит за рамки нашего понимания.
    Б. Паскаль

    Как построить траектории движения планет Солнечной системы в геоцентрической и гелиоцентрической системах отсчета? Почему планеты на небесной сфере описывают петлю? От чего зависит угловой размер петли планеты? Как Коперник оценил относительные расстояния от Солнца до планет?

    Урок-практикум

    Наблюдения за небом. Гравюра из трактата Гевелия «Селенография, или Описание Луны»


    Петлеобразная траектория Марса

    ЦЕЛЬ РАБОТЫ . Научиться строить траектории тел в разных системах отсчета.

    ПЛАН РАБОТЫ . Определите по результатам наблюдений, как зависит скорость обращения планет вокруг Солнца от расстояния планеты до Солнца. Постройте кривую видимого движения планеты Марс на небесной сфере.

    1. В таблице приведены результаты наблюдений за планетами Солнечной системы: их периоды обращения вокруг Солнца относительно звезд (T); средние расстояния до планет от Солнца (r, даны в астрономических единицах (а. е.), т. е. в единицах среднего расстояния от Земли до Солнца, которое составляет 149,6 млн км). Проанализировав таблицу, ответьте на вопросы:

    1. Какова зависимость линейной скорости обращения планеты от расстояния до Солнца?
    2. Оцените примерную линейную скорость движения планет вокруг Солнца. Сделайте вывод о зависимости скорости движения планеты вокруг Солнца от расстояния планеты до него. Заполните таблицу.

    ПОДСКАЗКА. Скорость связана с радиусом окружности и периодом формулой V = 2пr/Т. Для расчета переведите расстояния в километры, периоды в секунды.


    2. Постройте петлю попятного движения планеты Марс по небесной сфере геометрическим способом, но с точки зрения земного наблюдателя, имея в виду, что планеты движутся вокруг Солнца (по Копернику).

    Ответьте на вопросы:

    1. Почему земному наблюдателю кажется, что планета на небесной сфере описывает развернутую петлю, а не просто идет вперед-назад, как получилось на нашем рисунке в задании 2?
    2. От чего зависит угловой размер петли видимого движения планеты? Для ответа на этот вопрос постройте петлю видимого с Земли движения планеты Сатурн и сравните с угловым размером петли попятного движения Марса.

    ПОДСКАЗКА . Для этого заготовьте схему, на которой покажите положение Солнца, орбиту Земли (в приближении окружности), орбиту Марса, который расположен, как видно из таблицы, на расстоянии в 1,5 раза большем, чем Земля, от Солнца. Наблюдателю с Земли кажется, что планета описывает петлю, когда Земля обгоняет в своем движении внешнюю планету, например Марс, или внутренняя планета, например Венера, обгоняет в своем орбитальном движении Землю. Расположите на орбитах Землю и Марс вблизи этого положения. Отметьте несколько точек траектории этих планет - 1, 2, ..., 8, соответствующих восьми положениям планет. Учтите, что Марс движется медленнее Земли примерно в 1,2 раза. Обозначьте сферу неподвижных звезд. На ней постройте серию видимых положений планет с точки зрения земного наблюдателя (1, 2.....8). Для этого используйте прямую линию (луч зрения), соединяющую соответствующие положения Земли и Марса в определенные моменты времени (1,2,..., 8). На рисунке 63 показано лишь видимое положение планеты в момент времени 1. Достройте положения 2, 3.....8 и убедитесь в том, что земному наблюдателю кажется в период, когда Земля обгоняет Марс в своем орбитальном движении, что на небесной сфере Марс сначала идет в прямом движении на фоне звезд (с запада на восток), потом останавливается, поворачивает обратно (попятное движение) и после этого снова движется вперед. Нам кажется, что планеты описывают петлю, потому что в это время в своем движении по орбите Земля обгоняет внешнюю планету или внутренняя планета обгоняет Землю. Это объясняется относительностью движения. Чем дальше планета от Земли, тем меньшие угловые размеры имеет петля. Из-за некоторого угла наклона орбит планет петля кажется развернутой.


    Рис. 63. Объяснение петлеобразного движения планет

    В разных системах отсчета с точки зрения кинематики траектория движения выглядит по-разному. Видимое движение планет на небесной сфере - это отражение движения с точки зрения земного наблюдателя. Геометрические построения и использование данных наблюдений позволяют оценить относительные расстояния до планет. Впервые такую оценку сделал Коперник, описывая свою гелиоцентрическую систему мира.