Сенсорные зоны коры больших. Сенсорные зоны локализованы в определенных областях коры зрительная сенсорная зона располагается в з

Страница 2

Сенсорные зоны локализованы в определенных областях коры зрительная сенсорная зона располагается в затылочной области обоих полушарий, слуховая - в височной области, зона вкусовых ощущений - в нижней части теменных областей, соматосенсорная зона, анализирующая импульсацию с рецепторов мышц, суставов, сухожилий, кожи, располагается в области задней центральной извилины.

Моторные области коры. Зоны, раздражение которых законо­мерно вызывает двигательную реакцию, называют моторными или двигательными. Они расположены в области переднецентральной извилины. Моторная кора имеет двусторонние внутрикорковые связи со всеми сенсорными областями. Это обеспечивает тесное взаимодействие сенсорных и моторных зон.

Ассоциативные области коры.

Кора больших полушарий чело­века характеризуется наличием обширной области, не имеющей прямых афферентных и эфферентных связей с периферией. Эти области, связанные обширной системой связей ассоциативных во­локон с сенсорными и моторными зонами, получили название ас­социативных или третичных корковых зон. В задних отделах коры они расположены между теменными, затылочными и височными областями, в передних отделах они занимают основную поверх­ность лобных долей. Ассоциативная кора либо отсутствует, либо слабо развита у всех млекопитающих до приматов. У человека заднеассоциативная кора занимает примерно половину, а лобные области 25% всей поверхности коры. По строению они отлича­ются особенно мощным развитием верхних ассоциативных слоев клеток в сравнении с системой афферентных и эфферентных ней­ронов. Их особенностью является также наличие полисенсорных нейронов - клеток, воспринимающих информацию из различных сенсорных систем.

В ассоциативной коре расположены и центры, связанные с речевой деятельностью. Ассоциативные области коры рассматри­ваются как структуры, ответственные за синтез поступающей ин­формации, и как аппарат, необходимый для перехода от нагляд­ного восприятия к абстрактным символическим процессам. С ас­социативными зонами коры связано формирование свойственной только человеку второй сигнальной системы.

Клинические наблюдения показывают, что при поражении зад­неассоциативных областей нарушаются сложные формы ориента­ции в пространстве, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осущест­вляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений). При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. По­ражение лобных отделов коры приводит к невозможности осу­ществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения бу­дущего.

Смотрите также

Опоясывающий лишай
Опоясывающий лишай - спорадическое заболевание, возникающее в результате активизации латентного вируса ветряной оспы. Характеризуется воспалением задних корешков спинного мозга и межпозвоноч...

Общие методы определения активности ферментов
Прежде чем преступить к выделению фермента, необходимо избрать и тщательно отработать метод определения активности, под контролем которого производится выбор наиболее эффективных п...

Транзиторные ишемические атаки
Транзиторные ишемические атаки (ТИА) определяются клинически как быстро возникающие очаговые и реже диффузные (общемозговые) нарушения функции головного мозга, которые вызваны локальной ише...

А. Структурно-функциональная организация коры. Кора большого мозга представляет собой многослойную нейронную ткань с множеством складок. В коре выделяют 6 слоев (I-VI), каж­дый из которых состоит из пирамидных и звездчатых клеток

(рис. 5.16). Главная особенность пирамидных клеток (название от­ражает форму клеток) заключается в том, что их аксоны выходят из коры, а также оканчиваются в других корковых структурах. На­звание звездчатых клеток также обусловлено их формой; их аксо­ны оканчиваются в коре, т. е. речь идет о корковых интернейронах. ВI-IV слоях происходят восприятие и обработка поступающих в кору сигналов в виде импульсов. Покидающие кору эфферентные пути формируются преимущественно в У-У1 слоях. Деление коры на различные поля проведено К. Бродманом (1909) на основе цито-архитектонических признаков - формы и расположения нейронов. Автор выделил 52 поля, многие из них характеризуются функцио­нальными и нейрохимическими особенностями.


Кортикализация функций - возрастание в филогенезе роли коры большого мозга в анализе и регуляция функций организма и подчинение себе нижележащих отделов ЦНС. Выключение коры больших полушарий у обезьян и у человека приводит к потере не только локомоции, но и выпрямительных рефлексов, которые у дру­гих млекопитающих сохраняются.

Б. Локализация функций в коре большого мозга. В опре­деленных участках коры большого мозга сосредоточены нейро­ны, воспринимающие определенный вид раздражителя: свет - за­тылочная область, звук - височная доля и т.д. Двигательные функции также распределены на значительных площадях коры большого мозга, например, нейроны, аксоны которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифи­ческие) зоны.

Сенсорные зоны коры - это зоны, в которые поступает сенсор­ная информация (от рецепторов): проекционная кора, корковые от­делы анализаторов по И. П. Павлову. Эти зоны расположены пре­имущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса. Первичные сенсорные области - зоны сенсорной коры, раздражение или разрушение ко­торых вызывает четкие и постоянные изменения чувствительнос­ти организма (ядра анализаторов по И. П. Павлову). Они состоят преимущественно из мономодальных нейронов и формируют ощу­щения одного качества (одной модальности). В первичных сенсор­ных зонах обычно имеется четкое пространственное (топографи­ческое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, нейроны которых отвечают на дей­ствие нескольких раздражителей, т.е. они полимодальны.

Важнейшей сенсорной областью являются теменная кора постцентральной извилины и соответствующая ей часть парацент-ральной дольки на медиальной поверхности полушарий, которая обозначается как соматосенсорная область I. Здесь имеется про­екция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептив-ной чувствительности и чувствительности опорнодвигательного аппарата - от мышечных, суставных, сухожильных рецепторов (рис. 5.17).

Кроме соматосенсорной области I выделяют меньших разме­ров соматосенсорную область II, расположенную на границе


Двигательные зоны коры. Выделяют первичную и вторичную моторную области. В первичной моторной коре (прецентраль-ная извилина, поле 4) расположены нейроны, иннервирующие мо­тонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 5.17). Ос­новной закономерностью топографического представительства яв­ляется то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, ми­мика), требует участия больших по площади участков двигатель­ной коры.

Вторичная двигательная кора (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной из­вилины (премоторная кора), так и на медиальной поверхности, соот­ветствующей коре верхней лобной извилины (дополнительная мо­торная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, свя­занные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть им-пульсации от базальных ганглиев и мозжечка, участвует в переко- " дировании информации о плане сложных движений.

Ассоциативные области коры (синонимы: неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосред­ственно чувствительных или двигательных функций - им нельзя приписывать преимущественно сенсорных или двигательных фун­кций, нейроны этих зон обладают большими способностями к обу­чению. Границы этих областей обозначены недостаточно четко. Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как ней­роны первичных зон), а на несколько раздражителей - один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и других рецепторов. В результате этого ассо­циативная кора представляет собой своеобразный коллектор раз­личных сенсорных возбуждений, участвует в интеграции сенсор­ной информации и в обеспечении взаимодействия сенсорных и моторных областей коры. В настоящее время по таламо-кортикаль-ным проекциям выделяют две основные ассоциативные системы мозга: таламо-теменную и таламо-лобную. Существует мнение о це­лесообразности выделения и третьей - таламо-височной системы.


ФИЗИОЛОГИЯ ВНУТРЕННИХ ОРГАНОВ И СИСТЕМ ОРГАНИЗМА

Термин и понятие доминанты как основного прин­ципа координации рефлекторной деятельности моз­га были впервые даны в 1923 г. А. А. Ухтомским. Доминанта в физиологии - это «временно господ­ствующий рефлекс», которым направляется работа нервных центров в данный момент. Наличие доминан­ты создает повышенную готовность организма реаги­ровать так, а не иначе, ориентирует организм на по­иск тех ситуаций (тех раздражителей), по отношению к которым данная доминанта наиболее адекватна. А.А. Ухтомский выдвинул представление об «устой­чивом очаге повышенной возбудимости» нервных цен­тров, создающих скрытую готовность организма к оп­ределенному виду деятельности при одновременном торможении посторонних рефлекторных актов.

Доминанта представляет собой функциональное объединение нервных центров, состоящее из относи­тельно подвижного коркового компонента и субкор­тикальных, вегетативных и гуморальных компонен­тов. А.А. Ухтомский первый обратил внимание на то, что доминанта есть общий принцип работы цен­тральной нервной системы и что она определяет ос­вобождение организма от побочной деятельности во имя достижения наиболее важных для организма целей. В процессе развития формирования условного реф­лекса отмечаются определенные ступени и фазы, раз­вертывающиеся во времени в определенных структу­рах центральной нервной системы и имеющие свои пространственно-временные параметры. Но это не озна­чает, что в процессе выработки условного рефлекса должны непременно прослеживаться все классичес­кие фазы его развития. Например, при «экстремаль­ных» условиях ассоциативная связь образуется при одном-двух сочетаниях, в результате чего условные связи могут сохраняться длительное время, если не всю жизнь. B.C. Русинов считает, что механизмы условнорефлекторной деятельности, формирования но­вой условной связи часто протекают как единый про­цесс, включающий различные ступени развития. Та­кими ступенями являются простой суммационный рефлекс, сложный суммационный рефлекс - доминан­та и, наконец, условный рефлекс, который сам по себе может быть сложным в различной степени. Все три процесса рассматриваются как генетически взаимосвя­занные, но неидентичные. «Доминанта "проходит" сначала суммационный рефлекс, прежде чем стать доминантой. Условный рефлекс является доминантой, прежде чем стать условным рефлексом.

Нейрофизиологические механизмы образования условного рефлекса связаны с суммацией; в началь­ной стадии (генерализации) образования условный рефлекс аналогичен по физиологическим механизмам доминанте, но затем становится существенно иным. Доминанта образуется на всех и любых этажах цент­ральной нервной системы (например, спинальная до­минанта), и для ее образования не обязательно учас­тие коры головного мозга. Для выработки условного рефлекса необходима кора больших полушарий (у высших животных). Они разные по степени своей сложности, по структурам центральной нервной сис­темы, вовлеченным в процесс, по системам связи и значениям этих связей для поведения .

Исходной предпосылкой замыкания временной связи является общефизиологический феномен про­торения пути. Он заключается в усилении рефлек­торного ответа организма при одновременном или последовательном раздражении одного и того же ре­цептивного поля. Одно раздражение своими следовы­ми эффектами облегчает появление ответа на действие следующего. Явление проторения состоит в постепен­ном повышении проводимости нервного возбуждения по первично стимулируемому пути и нервного цент­ра. Благодаря явлению проторения нередко даже подпороговое раздражение постепенно оказывается дей­ственной предпосылкой для возникновения очага повышенной возбудимости. Такой процесс непосред­ственно связан с явлением суммации возбуждения.

Явление суммации впервые было описано И.М. Се­ченовым. Главное, на что обращал внимание И.М. Се­ченов, это то, что иррадиация возбуждения в централь­ной нервной системе происходит в направлении оча­гов повышенной возбудимости. Явление суммации заключается в возникновении действенного возбуж­дения в нервных центрах в условиях применения ряда последовательных раздражений, каждое из которых само по себе недостаточно, чтобы вызвать ответ.

Таким образом, идея А.А. Ухтомского о том, что доминанта есть ключ к пониманию условного рефлек­са, получила экспериментальное и теоретическое раз­витие. Получен ответ на вопрос о том, каковы меха­низмы взаимодействия доминанты и условного реф­лекса. Они дополняют друг друга. Синтез механизма доминанты и механизма формирования условного рефлекса обусловливает два фактора организации поведения: его активный, творчески-поисковый ха­рактер (доминанта) и точное соответствие объектив­ной реальности (упроченный, тонко специализирован­ный условный рефлекс).

ТЕМА 8. ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ БОЛЬШИХ ПОЛУШАРИЙ .

В коре больших полушарий различают сенсорные, моторные и ассоциативные зоны. Установлено, что в различные отделы ко­ры больших полушарий проецируются все рецепторные поля организма человека. Эти области коры были названы И. П. Павло­вым корковыми или центральными концами анализаторов. Кора больших полушарий представляет собой совокупность корковых концов анализаторов. К ним приходят афферентные импульсы от соответствующих рецепторов.

Сенсорные зоны коры больших полушарий . Цент­ральные отделы анализаторов называют сенсорными областями ко­ры. Это зоны различной чувствительности, не имеющие четко очер­ченных границ, и периферической части они несколько перекрывают друг друга. Размер зоны зависит от количества клеток, воспринимающих раздражение от определенных рецепторов. Чем больше этих клеток, тем тоньше осуществляется анализ периферических раздражений. При поражении или разрушении сенсорных областей коры наступает нарушение сенсорных функций (слепота, глухо­та и др.).

Соматосенсорная зона - это область проприоцептивной, кож­ной и висцеральной чувствительности, располагается в задне-центральной извилине, кзади от центральной борозды. При ее раздражении возникает ощущение прикосновения, пока­лывания, онемения. Иногда возникает ощущение низкой или вы­сокой температуры, очень редко - слабой боли. К этой зоне при­ходят проприоцептивные импульсы от скелетных мышц, сухожилий и суставов, а также импульсы от тактильных, температурных и других рецепторов кожи. В правое полушарие поступают им­пульсы от левой половины тела, а в левое - от правой. От внут­ренних органов импульсы поступают в зоны кожной чувствитель­ности соответствующих частей тела.

Самый большой размер имеет сенсорная область кисти руки, а затем голосового аппарата и лица. Наименьшие размеры имеют сенсорные области туловища, бедра, голени.

Сенсорная зрительная зона располагается в затылочной обла­сти коры на стенках и дне шпорной борозды в правом и левом полушариях. При раздражении отдельных пунктов этой зоны возникают простейшие зрительные ощущения: вспышки света, наступление темноты, различные цветовые ощущения. Никогда не возникает ощущение сложных зрительных образов. В эту зону импульсы приходят от рецепторов сетчатки.

Сенсорная слуховая зона располагается в височной области. Раздражение этой области вызывает ощущение низких или высо­ких, громких или тихих звуков, при этом никогда не возникает ощущение речевых звуков. В эту область афферентные импульсы приходят от рецепторов улитки.

Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. При ее раздраже­нии возникают различные вкусовые ощущения. К ней приходят импульсы от вкусовых рецепторов полости рта и языка через ядра таламуса.

Зона обонятельных ощущений располагается в гиппокамповой извилине и амоновом роге. При ее раздражении возникают прос­тые обонятельные ощущения. К ней приходят импульсы от обоня­тельных рецепторов слизистой оболочки носа по обонятельному тракту. В возникновении обонятельных ощущений большое зна­чение имеют структуры старой коры.

Рис. 1.Расположение двигательных точек в моторной зоне коры больших полу­шарий у человека.

Моторные зоны коры больших полушарий . Моторными зонами называют отделы коры больших полушарий, при раз­дражении которых возникает движение. Они взаимодействуют с сенсорными зонами, вследствие чего при раздражении некоторых участков моторных зон вместе с движением возникает и ощущение, а при раздражении сенсорной области наряду с ощущением воз­никает и движение. Отделы коры больших полушарий, располо­женные в передней центральной извилине (кпереди от центральной борозды), связаны с регуляцией двигательной функции. При раз­дражении различных участков этой области возникает сокращение отдельных мышц. При ее поражении наблюдаются серьезные нарушения движений.

Представительство двигательной функции различных частей те­ла в передней центральной извилине соответствует представительст­ву сенсорной функции в заднецентральной извилине. С верхней частью полушарий связана регуляция движений нижних конечно­стей, затем туловища, еще ниже руки, а затем мышц лица и головы. Наибольшее пространство занимает двигательная зона кисти и пальцев руки и мышц лица, наименьшее - мышц туловища (рис. 1). Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела.

Моторная и сенсорная зоны коры, расположенные с обеих сто­рон от Роландовой борозды, представляют собой единое функ­циональное образование, и их часто объединяют под названием. сенсомоторной зоны.

Ассоциативные зоны. Ассоциативными зонами назы­вают отделы коры больших полушарий, расположенные рядом с сенсорными зонами, в которых возникает возбуждение при по­ступлении импульсов в сенсорные зоны. Они очень хорошо разви­ты у человека. Их особенностью является то, что в одной и той же ассоциативной зоне возбуждение может возникать при поступ­лении импульсов от различных рецепторов. Так, например, в зри­тельной ассоциативной зоне возбуждение может возникать не только в ответ на зрительные, но и в ответ на слуховые раздра­жения. При разрушении ассоциативной зоны наступает временное нарушение функции, которая восстанавливается за счет сохранив­шихся отделов коры больших полушарий. Тем не менее, у челове­ка при нарушении функций этих зон может быть утрачена спо­собность правильно оценивать раздражение.

ЛИТЕРАТУРА Основная

1. Анохин П.К. Узловые вопросы теории функциональной системы. -М.,1980.

2. Воронин Л.Г. Курс лекций по физиологии высшей нервной деятельности. -М, 1965.

3. Воронин Л.Г. Физиология высшей нервной деятельности. - М., 1979.

4. Данилова Н.Н., Крылова А.П. Физиология высшей нервной деятельности.-М., 1997.

5. Леонтьев А.Н. Проблемы развития психики. - М., 1981.

6. Леоньева Н.Н., Маринова К.В. Анатомия и физиология детского организма. - М., 1986.

7. Марютина Т.М., Ермолаев О.Ю. Введение в психофизиологию. -М.,1997.

8. Смирнов В.М. Нейрофизиология и высшая нервная деятельность детей
подростков. - М., 2000.

Дополнительная

1. Агаджанян Н.А., Тель Л.З., Циркин В.П., Чеснокова С.А. Физиология
человека. - М., Новгород, 2001.

2. Анохин П.К. Биология и нейрофизиология условного рефлекса. - М., 1968.

3. Бехтерева Н.П. Здоровый и больной мозг. -Л., 1988.

4. Кольцова М.М. Двигательная активность и развитие функций мозга ребенка. - М., 1973.

5. Симерницкая Э.Г. Мозг человека и психические процессы в онтогенезе.-М., 1985.

6.Физиология человека / Под ред.Р.Шмидта и Г.Тевса. - М., 1985. - Т.1

  • 2.1. Зрительный анализатор
  • 2.1.1. Структурно-функциональная характеристика
  • 2.1.2. Механизмы, обеспечивающие ясное видение в различных условиях
  • 2.1.3. Цветовое зрение, зрительные контрасты и последовательные образы
  • 2.2. Слуховой анализатор
  • 2.2.1. Структурно-функциональная характеристика
  • 2.3. Вестибулярный и двигательный (кинестетический) анализаторы
  • 2.3.1. Вестибулярный анализатор
  • 2.3.2. Двигательный (кинестетический) анализатор
  • 2.4. Внутренние (висцеральные) анализаторы
  • 2.5. Кожные анализаторы
  • 2.5.1. Температурный анализатор
  • 2.5.2. Тактильный анализатор
  • 2.6. Вкусовой и обонятельный анализаторы
  • 2.6.1. Вкусовой анализатор
  • 2.6.2. Обонятельный анализатор
  • 2.7. Болевой анализатор
  • 2.7.1. Структурно-функциональная характеристика
  • 2.7.2. Виды боли и методы ее исследования
  • 1 _ Легкие; 2 – сердце; 3 – тонкая кишка; 4 – мочевой пузырь;
  • 5 – Мочеточник; 6 – почка; 7, 9 – печень и желчный пузырь;
  • 8 – Поджелудочная железа; 10 – матка, яичник
  • 2.7.3. Обезболивающая (антиноцицептивная) система
  • Глава 3. Системный механизм восприятия
  • Is(p - р) = к.
  • 1– Акцептор восприятия; 2 – воздействующий фактор; 3 – орган чувств;
  • 4 – Афферентные пути; 5 – эфферентный контроль; 6 – система знаний.
  • ЧастьIii. Высшая нервная деятельность Глава 4. История. Методы исследования
  • 4.1. Развитие концепции рефлекса. Нервизм и нервный центр
  • 4.2. Развитие представлений о внд
  • 4.3. Методы исследования внд
  • 3 – -Ритм; 4 – -ритм; б – реакция десинхронизации
  • Глава 5. Формы поведения организма и память
  • 5.1. Врожденные формы деятельности организма
  • 5.2. Приобретенные формы поведения (научение)
  • 5.2.1. Характеристика условных рефлексов
  • Отличия условных рефлексов от безусловных рефлексов
  • 3 - Шипение; 4 – метроном с частотой 120 уд./мин
  • 5.2.2. Классификация условных рефлексов
  • 5.2.3. Пластичность нервной ткани
  • 5.2.4. Стадии и механизм образования условных рефлексов
  • II – обратная временная связь
  • 5.2.5. Торможение условных рефлексов
  • 5.2.6. Формы научения
  • 5.3. Память*
  • 5.3.1. Общая характеристика
  • 5.3.2. Кратковременная и промежуточная память
  • 1, 2, 3 – Возбуждающие нейроны
  • 5.3.3. Долговременная память
  • 5.3.4. Роль отдельных структур мозга в формировании памяти
  • Глава 6. Типы внд и темперамент в структуре индивидуальности
  • 6.1. Основные типы внд животных и человека
  • 6.2. Типологические варианты личности детей
  • 6.3. Основные положения по формированию типа вид и темперамента индивидуальности
  • 6.4. Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе
  • 6.5. Роль генома в пластических изменениях нервной ткани
  • 6.6. Роль генотипа и среды в формировании личности
  • Глава 7. Потребности, мотивации, эмоции
  • 7.1. Потребности
  • 7.2. Мотивации
  • 7.3. Эмоции (чувства)
  • Глава 8. Психическая деятельность
  • 8.1. Виды психической деятельности
  • 8.2. Электрофизиологические корреляты психической деятельности
  • 8.2.1. Психическая деятельность и электроэнцефалограмма
  • 8.2.2. Психическая деятельность и вызванные потенциалы
  • 8.3. Особенности психической деятельности человека
  • 8.3.1. Деятельность и мышление человека
  • 8.3.2. Вторая сигнальная система
  • 8.3.3. Развитие речи в онтогенезе
  • 8.3.4. Латерализация функций
  • 8.3.5. Социально-детерминированное сознание*
  • 8.3.6. Осознаваемая и подсознательная деятельность мозга
  • Глава 9. Функциональное состояние организма
  • 9.1. Понятия и нейроанатомия функционального состояния организма
  • 9.2. Бодрствование и сон. Сновидения
  • 9.2.1. Сон и сновидения, оценка глубины сна, значение сна
  • 9.2.2. Механизмы бодрствования и сна
  • 9.3. Гипноз
  • Глава 10. Организация поведенческих реакций
  • 10.1. Уровни интегративной деятельности мозга
  • 10.2. Концептуальная рефлекторная дуга
  • 10.3. Функциональная система поведенческого акта
  • 10.4. Основные структуры мозга, обеспечивающие формирование поведенческого акта
  • 10.5. Активность нейронов и поведение
  • 10.6. Механизмы управления движением
  • Приложение. Практикум по физиологии сенсорных систем и высшей нервной деятельности
  • 1. Физиология сенсорных систем*
  • Работа 1.1. Определение поля зрения
  • 1– Поле зрения черно-белого видения; 2, 3, 4, 5 – поля зрения для желтого, синего, красного, зеленого цветов соответственно
  • Границы полей зрения
  • Работа 1.2. Определение остроты зрения
  • Работа 1.3. Аккомодация глаза
  • Работа 1.4. Слепое пятно (опыт Мариотта)
  • Работа 1.5. Исследование цветового зрения
  • Работа 1.6. Определение критической частоты слияния мельканий (кчсм)
  • Работа 1.7. Стереоскопическое зрение. Диспарантность
  • Работа 1.8. Исследование слуховой чувствительности к чистым тонам у человека (тональная аудиометрия)
  • Работа 1.9. Исследование костной и воздушной проводимости звука
  • Работа 1.10. Бинауральный слух
  • Работа 1.11. Эстезиометрия кожи
  • Показатели пространственной тактильной чувствительности кожи
  • Работа 1.12. Определение порогов вкусовой чувствительности (густометрия)
  • Показатели порогов вкусовой чувствительности
  • Работа 1.13. Функциональная мобильность сосочков языка до и после приема пищи
  • Показатели функциональной мобильности вкусовых сосочков языка
  • Работа 1.14. Термоэстезиометрия кожи
  • Определение плотности расположения терморецепторов
  • Изучение функциональной мобильности холодовых рецепторов кожи
  • Показатели функциональной мобильности холодовых рецепторов кожи
  • Работа 1.15. Определение чувствительности обонятельного анализатора (ольфактометрия)
  • Пороги обоняния различных пахучих веществ
  • Работа 1.16. Изучение состояния вестибулярного анализатора с помощью функциональных проб у человека
  • Работа 1.17. Определение порогов различения
  • Пороги различения ощущения массы
  • 2. Высшая нервная деятельность
  • Работа 2.1. Выработка мигательного условного рефлекса на звонок у человека
  • Работа 2.2. Образование условного зрачкового рефлекса на звонок и на слово «звонок» у человека
  • Работа 2.3. Исследование биоэлектрической активности коры большого мозга – электроэнцефалография
  • 1 – Отметка раздражения; 2 – лобная область; 3 – роландическая область; 4 – затылочная область;
  • Работа 2.4. Определение объема кратковременной слуховой памяти у человека
  • Набор цифр для исследования кратковременной памяти
  • Работа 2.5. Связь реактивностис личностными чертами – экстраверсией, интроверсией и нейротизмом
  • Работа 2.6. Роль словесных раздражителей в возникновении эмоций
  • Работа 2.7. Исследование изменений ээг и вегетативных показателей при эмоциональном напряжении человека
  • Изменения ээг и вегетативных показателей при эмоциональном напряжении человека
  • Работа 2.8. Изменение параметров вызванного потенциала (вп) на вспышку света
  • Влияние произвольного внимания на вызванные потенциалы
  • Работа 2.9. Отражение семантики зрительного образа в структуре вызванных потенциалов
  • 1 – Переключатель экспериментатора; 2 – переключатель испытуемого; 3 – электростимулятор; 4 – фотостимулятор; 5 – лампа-вспышка
  • Параметры вп при семантической нагрузке
  • Работа 2.10. Влияние цели на результат деятельности
  • Зависимость результата деятельности от поставленной цели
  • Работа 2.11. Влияние обстановочной афферентации на результат деятельности
  • Зависимость результата деятельности от обстановочной афферентации
  • Работа 2.12. Определение устойчивости и переключаемости произвольного внимания
  • Работа 2.13. Оценка трудоспособности человека при выполнении работы, требующей внимания
  • Корректурная таблица
  • Показатели функционального состояния испытуемого
  • Результаты трудовой деятельности испытуемого
  • Работа 2.14. Значение памяти и доминирующей мотивации в целенаправленной деятельности
  • Результаты суммирования цифр
  • Работа 2.15. Влияние умственного труда на функциональные показатели сердечно-сосудистой системы
  • Работа 2.16. Роль обратной афферентации в оптимизации режима деятельности оператора у компьютера
  • Работа 2.17. Автоматический анализ показателей сердечно-сосудистой системы на разных стадиях образования двигательного навыка
  • Работа 2.18. Анализ скорости обучения оператора в детерминированных средах
  • Работа 2.19. Применение компьютера для изучения кратковременной памяти
  • Рекомендуемая литература
  • Содержание
  • 2. Высшая нервная деятельность 167
  • Локализация функций в коре большого мозга

    Общая характеристика. В определенных участках коры большого мозга сосредоточены преимущественно нейроны, воспринимающие один вид раздражителя: затылочная область – свет, височная доля – звук и т. д. Однако после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются. Согласно теории И. П. Павлова в коре большого мозга имеется «ядро» анализатора (корковый конец) и «рассеянные» нейроны по всей коре. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей. Свойство мультифункциональности позволяет той или иной корковой структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей, функцию (О.С. Адрианов). Степень мультифункциональности различных корковых структур неодинакова. В полях ассоциативной коры она выше. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытия афферентных возбуждений, особенно на таламическом и корковом уровнях, модулирующее влияние различных структур, например неспецифических ядер таламуса, базальных ганглиев на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения. С помощью микроэлектродной техники удалось зарегистрировать в различных областях коры большого мозга активность специфических нейронов, отвечающих на стимулы только одного вида раздражителя (только на свет, только на звук и т. п.), т. е. имеется множественное представительство функций в коре большого мозга.

    В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

    Сенсорные зоны коры. Сенсорная информация поступает в проекционную кору, корковые отделы анализаторов (И.П. Павлов). Эти зоны расположены преимущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают в основном от релейных сенсорных ядер таламуса.

    Первичные сенсорные зоны – это зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма (ядра анализаторов по И. П. Павлову). Они состоят из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

    Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни – на оттенки цвета, другие – на направление движения, третьи – на характер линий (край, полоса, наклон линии) и т.п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных, или модулирующих) систем.

    Вторичные сенсорные зоны расположены вокруг первичных сенсорных зон, менее локализованы, их нейроны отвечают на действие нескольких раздражителей, т.е. они полимодальны.

    Локализация сенсорных зон. Важнейшей сенсорной областью является теменная доля постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий. Эту зону обозначают как соматосенсорную область I . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата – от мышечных, суставных, сухожильных рецепторов (рис. 2).

    Рис. 2. Схема чувствительного и двигательного гомункулусов

    (по У. Пенфильду, Т. Расмуссену). Разрез полушарий во фронтальной плоскости:

    а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре предцентральной извилины

    Кроме соматосенсорной области I выделяют соматосенсорную область II меньших размеров, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Точность локализации частей тела здесь выражена в меньшей степени. Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах.

    В затылочной доле расположена первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности, возникают более сложные зрительные образы и их опознание.

    Во вторичных зонах ведущими являются 2-й и 3-й слои нейронов, для которых основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору, после чего инициируется (в случае необходимости) поведенческая реакция с обязательным участием двигательной коры.

    Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

    В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

    Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

    Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.


    Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области, двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

    Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

    Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

    Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

    С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

    Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

    В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

    Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

    Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

    Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

    Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы, в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

    В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.