Ускорение кориолиса. Центробежная сила инерции

Друзья мои, а вы никогда не задумывались, почему в северном полушарии Земли у рек, текущих без резких изгибов в довольно мягких породах, правый берег почти всегда довольно крутой, а левый - гораздо положе? Или почему Гольфстрим течет на север вдоль побережья Европы, а не Северной Америки? Или почему по Земле постоянно гуляют циклоны и антициклоны?
Для того чтобы ответить на все эти вопросы приготовьте правую руку и держите растопыренными большой, указательный и средний пальцы. С их помощью и разберемся.
Как мы понимаем, на любое покоящееся на Земле тело действует весьма приличная сила тяжести и маленькая центробежная сила, возникающая от вращения Земли вокруг своей оси. Их геометрическая сумма (по правилу параллелограмма) точно перпендикулярна поверхности Земли (точнее - покоящейся воды). Это абсолютно верно, но только для покоящихся тел.
А вот на движущиеся по Земле тела действует еще одна сила. Называемая Кориолисовой. Если бы Земля не вращалась вокруг своей оси, то и Кориолисовой и центробежной сил просто бы не было. Кориолисова сила в нашей обыденной жизни существенно меньше центробежной. И направлена она поперек траектории движения тела и поперек оси вращения Земли. Именно поэтому нам и понадобятся три пальца правой руки. Большой палец надо направить в направлении движения тела, а указательный - вдоль оси вращения Земли от южного полюса к северному. Тогда направление Кориолисовой силы будет указывать средний палец правой руки.
Замечу также, что сила Кориолиса пропорциональна скорости движущегося тела. И буду считать, что движущееся тело - это вода горячо любимой нами Волги. Если бы Волга была стоячим водоемом, то ее поверхность была бы точно перпендикулярна суммарной (тяжести и центробежной) силе. Но Волга течет с севера на юг (большой палец). Направив указательный палец вдоль оси вращения Земли мы увидим, что средний палец (сила Кориолиса) направлен на правый берег Волги. Отсюда ясно, что сила Кориолиса прижимает воду Волги к правому ее берегу. Насколько?
Не буду утомлять вас формулами и расчетами. Предположим только, что скорость течения Волги = 1 м/сек, а ее ширина = 1 км. Тогда простая оценка показывает, что у правого берега Волги уровень воды должен быть примерно на 1 (один) сантиметр выше, чем у левого. А если бы скорость течения была = 2 м/сек, то и уровень воды у правого берега был бы выше на 2 см, чем у левого.
И поскольку берега Волги сложены в основном из мягких пород, течение подтачивает именно правый берег. Из-за чего он становится круче. А русло Волги чрезвычайно медленно смещается на запад.
Живущие на берегах текущих на север рек могут точно так же понять, почему и у этих рек правые берега, как правило, круче левых. Разумеется, если берега рек сформированы из достаточно твердых (каменных) пород, то рассуждения о крутизне берегов теряют силу. Просто потому, что не все подвластно текущей воде.
Если теперь мы посмотрим на Гольфстрим, текущий с юга на север, то европейский берег будет для него правым, а североамериканский левым. Поэтому Гольфстрим и прижимается к Европе той самой Кориолисовой силой. Возможно, именно поэтому не следует слишком доверчиво воспринимать апокалиптические прогнозы об исчезновении Гольфстрима и замерзании Европы.
Что же касается циклонов и антициклонов, то это - предмет для отдельного поста.

(по имени французского ученого Г. Г. Кориолиса) – одна из сил инерции, существующая в системе отсчета, вращающейся и проявляется при движении в направлении под углом к оси вращения.
Причина появления силы Кориолиса в кориолисовым ускорении. Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной F = ma, где а – кориолисово ускорения. Соответственно, тело действует согласно третьему закону Ньютона с силой противоположной направленности. F K =-ma. Сила, действующая со стороны тела, и будет называться силой Кориолиса.
При вращении диска, далеки от центра точки движутся с тем большей касательной скоростью, чем менее далекие. Если мы хотим переместить некоторое тело вдоль радиуса, так, чтобы оно оставалось на радиусе, то нам придется увеличить скорость тела, то есть, придать ему ускорение. Если наша система отсчета вращается вместе с диском, то мы почувствуем, что тело «не хочет» оставаться на радиусе, а «норовит» сместиться – это и есть сила Кориолиса.
В инерциальных системах отсчета действует закон инерции, то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью. Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что для того чтобы оно осуществилось, требуется придавать телу ускорение, так как чем дальше от центра, тем больше должна быть касательная скорость вращения. Это означает, что с точки зрения системы отсчета, вращающейся некая сила будет пытаться сместить тело с радиуса.
Если вращение происходит по часовой стрелке, то тело, движется от центра вращения, стремится сойти с радиуса влево. Если вращение происходит против часовой стрелки – то вправо.
В системе координат, которая вращается вокруг оси с угловой скоростью , Тело, движущееся с линейной скоростью , Имеет ускорение

Соответствующая сила, которая заставляет тело двигаться с таким ускорением должна равняться

Где m – масса тела.
Кориолисова сила перпендикулярна оси вращения и к скорости тела. Если тело движется вдоль оси вращения, кориолисовым силы не возникает. Наибольшее значение Кориолисова сила тогда, когда тело движется перпендикулярно оси вращения.
Сила Кориолиса проявляется, например, в работе маятника Фуко. Кроме того, поскольку Земля вращается, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в северном полушарии более крутые – их подмывает вода под действием этой силы. В южном полушарии все происходит наоборот. Сила Кориолиса ответственна также и за возникновение циклонов и антициклонов.
Вопреки популярному мнению, маловероятно, что сила Кориолиса влияет на направление закручивания воды в водопроводе, поскольку Земля вращается очень медленно (один оборот за сутки) и эта сила очень мала.

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы, появляется еще одна сила, называемая силой Кориолиса .

Рассмотрим рис.5. Шарик массой m движется прямолинейно со скоростью от центра к краю диска. Если диск неподвижен, то шарик попадает в точку М , а если диск вращается с постоянной угловой скоростью ω, то шарик попадает в точку N . Это обусловлено тем, что на шарик действует сила Кориолиса.

Рис.5

Появление силы Кориолиса можно обнаружить, если рассмотреть пример с шариком на спице на вращающемся диске, но без пружины. Для того чтобы заставить шарик двигаться с некоторой скоростью вдоль спицы, необходима боковая сила. Шарик вращается вместе с диском с постоянной угловой скоростью w, поэтому его момент импульса равен:

Если шарик будет перемещаться вдоль спицы с постоянной скоростью , то с изменением момент импульса шарика изменится. А это означает, что на движущееся во вращающейся системе тело должен действовать некоторый момент силы, который согласно основному уравнению динамики вращательного движения равен

Для того чтобы заставить шарик двигаться по вращающемуся диску вдоль радиальной прямой со скоростью , необходимо прилагать боковую силу

направленную перпендикулярно . Относительно вращающейся системы (диска) шарик движется с постоянной скоростью.

Это можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной к скорости (рис.6). Сила и есть Кориолисова сила инерции. Она определяется выражением

Рис.6

С учетом направления силу Кориолиса можно представить в виде

Сила Кориолиса всегда перпендикулярна скорости тела . Во вращающейся системе отсчета при = 0 эта сила отсутствует. Таким образом, Кориолисова сила инерции возникает только тогда, когда система отсчета вращается, а тело движется относительно этой системы. Действием силы Кориолиса объясняется ряд эффектов, наблюдающихся на поверхности Земли, например, поворот плоскости колебаний маятника Фуко относительно Земли, отклонение к востоку от линии отвеса свободно падающих тел, размытие правого берега рек в северном полушарии и левого в южном, неодинаковый износ рельсов при двухколейном движении.

Начало формы

И Франческо Мария Гримальди в 1651 году .

Энциклопедичный YouTube

  • 1 / 5

    Если в какой-либо инерциальной системе отсчёта материальная точка (МТ) равномерно движется вдоль радиуса, равномерно вращающегося вокруг перпендикулярной к нему оси, и её скорость направлена в сторону от центра вращения, то при этом вместе с увеличением расстояния от центра вращения возрастает и компонента скорости тела, направленная перпендикулярно радиусу. Значит, в данном случае компонента ускорения точки, перпендикулярная радиусу, отлична от нуля. Эта компонента ускорения МТ в инерциальной системе отсчёта и представляет собой ускорение Кориолиса .

    При рассмотрении того же самого движения в неинерциальной системе отсчёта , вращающейся вместе с радиусом, наблюдаемая картина будет другой. Действительно, в этой системе отсчёта скорость МТ не изменяется и, соответственно, компонента её ускорения, перпендикулярная радиусу, равна нулю. Значит, движение выглядит так, как будто во вращающейся системе отсчёта на МТ действует дополнительная сила, направленная противоположно ускорению Кориолиса и компенсирующая его. Эта дополнительная «сила», вводимая для удобства описания движения, но в действительности отсутствующая, и есть сила Кориолиса . Понятно, что данная «сила» позволяет учесть влияние вращения подвижной системы отсчёта на относительное движение МТ, но при этом никакому реальному взаимодействию МТ с другими телами не соответствует.

    Более строго - ускорение Кориолиса есть удвоенное векторное произведение вектора угловой скорости вращения системы координат на вектор скорости движения МТ относительно вращающейся системы координат . Соответственно, сила Кориолиса равна произведению массы МТ на её ускорение Кориолиса, взятому со знаком минус .

    Определение

    Пусть имеются две системы отсчёта, одна из которых (S) {\displaystyle (S)} инерциальная, а другая (S ′) {\displaystyle \left(S\,"\right)} движется относительно первой произвольным образом и в общем случае является неинерциальной. Будем также рассматривать движение произвольной материальной точки массы m {\displaystyle m} . Её ускорение по отношению к первой системе отсчёта обозначим , а по отношению ко второй - .

    Связь между ускорениями a → a {\displaystyle {\vec {a}}_{a}} и a → r {\displaystyle {\vec {a}}_{r}} следует из теоремы Кориолиса (см. ниже):

    a → a = a → r + a → e + a → K , {\displaystyle {\vec {a}}_{a}={\vec {a}}_{r}+{\vec {a}}_{e}+{\vec {a}}_{K},}

    где a → e {\displaystyle {\vec {a}}_{e}} - перено́сное ускорение, а a → K {\displaystyle {\vec {a}}_{K}} - ускорение Кориолиса (кориолисово ускорение, поворотное ускорение). Напомним, что переносным ускорением называют ускорение той точки системы S ′ {\displaystyle S\,"} относительно системы S {\displaystyle S} , в которой в данный момент находится рассматриваемая материальная точка .

    После умножения на массу точки и учёта второго закона Ньютона m a → a = F → {\displaystyle m{\vec {a}}_{a}={\vec {F}}} , данное соотношение можно представить в виде

    m a → r = F → + (− m a → e) + (− m a → K) . {\displaystyle m{\vec {a}}_{r}={\vec {F}}+(-m{\vec {a}}_{e})+(-m{\vec {a}}_{K}).}

    Величину (− m a → e) {\displaystyle (-m{\vec {a}}_{e})} называют переносной силой инерции , а величину (− m a → K) {\displaystyle (-m{\vec {a}}_{K})} - силой Кориолиса (кориолисовой силой). Обозначив их F → e {\displaystyle {\vec {F}}_{e}} и F → K {\displaystyle {\vec {F}}_{K}} соответственно, можно записать

    m a → r = F → + F → e + F → K . {\displaystyle m{\vec {a}}_{r}={\vec {F}}+{\vec {F}}_{e}+{\vec {F}}_{K}.}

    Полученное выражение выражает основной закон динамики для неинерциальных систем отсчёта.

    Из кинематики известно, что

    a → K = 2 [ ω → × v → r ] , {\displaystyle {\vec {a}}_{K}=2\left[{\vec {\omega }}\times {\vec {v}}_{r}\right],}

    где ω → {\displaystyle {\vec {\omega }}} - угловая скорость вращения неинерциальной системы отсчёта S ′ {\displaystyle S\,"} , - скорость движения рассматриваемой материальной точки в этой системе отсчёта; квадратными скобками обозначена операция векторного произведения . С учётом этого для силы Кориолиса выполняется

    F → K = − 2 m [ ω → × v → r ] . {\displaystyle {\vec {F}}_{K}=-2\,m\,\left[{\vec {\omega }}\times {\vec {v}}_{r}\right].}

    Замечания

    Теорема Кориолиса

    Заметим, что в частном случае вращательного движения инерциальной системы отсчета относительно начала координат для того, чтобы точка относительно неинерциальной системы отсчёта двигалась прямолинейно по радиусу к оси вращения (см. рис.), необходимо приложить к ней силу, которая будет противодействующей суммы силы Кориолиса − 2 m [ ω → × v → r ] {\displaystyle -2m\left[{\vec {\omega }}\times {\vec {v}}_{r}\right]} , переносной вращательной силы − m [ ε → × R → ] {\displaystyle -m\left[{\vec {\varepsilon }}\times {\vec {R}}\right]} и переносной силы инерции поступательного движения системы отсчёта − m a → 0 {\displaystyle -m{\vec {a}}_{0}} . Составляющая же ускорения [ ω → × [ ω → × R → ] ] {\displaystyle \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]} не отклонит тело от этой прямой, так как является осестремительным переносным ускорением и всегда направлена по этой прямой. Действительно, если рассматривать уравнение такого движения, то после компенсации в нём вышеупомянутых сил получится уравнение [ ω → × [ ω → × R → ] ] + a → r = 0 {\displaystyle \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]+{\vec {a}}_{r}=0} , которое если умножить векторно на , то с учетом [ R → × [ ω → × [ ω → × R → ] ] ] = 0 {\displaystyle \left[{\vec {R}}\times \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]\right]=0} получим относительно v → r {\displaystyle {\vec {v}}_{r}} дифференциальное уравнение [ R → × d r v → r d t ] ≡ 0 {\displaystyle \left[{\vec {R}}\times {\frac {{\stackrel {~}{d_{r}}}{\vec {v}}_{r}}{dt}}\right]\equiv 0} , имеющее при любых R → {\displaystyle {\vec {R}}} и v → r {\displaystyle {\vec {v}}_{r}} общим решением [ R → × v → r ] = C o n s t → {\displaystyle \left[{\vec {R}}\times {\vec {v}}_{r}\right]={\vec {Const}}} , которое и является уравнением такой прямой - [ R → × v → r ] = 0 → {\displaystyle \left[{\vec {R}}\times {\vec {v}}_{r}\right]={\vec {0}}} .

    Обсуждение

    Правило Жуковского

    Сила Кориолиса не инвариантна относительно перехода из одной системы отсчёта в другую. Она не подчиняется закону действия и противодействия . Движение тела под действием силы Кориолиса аналогично движению во внешнем силовом поле. Сила Кориолиса всегда является внешней по отношению к любому движению системы материальных тел.

    Сила Кориолиса и закон сохранения момента импульса

    Если вращающаяся лаборатория, принимаемая за неинерциальную систему отсчёта, имеет конечный момент инерции , то в соответствии с законом сохранения момента импульса при движении тела по радиусу, перпендикулярному оси вращения, угловая скорость вращения будет увеличиваться (при движении тела к центру) или уменьшаться (при движении тела от центра). Рассмотрим эту ситуацию с точки зрения неинерциальной системы.

    Хорошим примером может быть человек, который перемещается в радиальном направлении по вращающейся карусели (например, держась за ведущий к центру поручень). При этом с точки зрения человека он при движении к центру будет совершать работу против центробежной силы (эта работа пойдёт на увеличение энергии вращения карусели). На него также будет действовать сила Кориолиса, которая стремится отклонить его движение от радиального направления («сносит» его вбок), и противодействуя сносу (прилагая поперечное усилие к поручню), он будет раскручивать карусель.

    При движении от центра центробежная сила будет совершать работу над человеком (за счёт уменьшения энергии вращения), а противодействие силе Кориолиса будет тормозить карусель.

    Сила Кориолиса в природе и технике

    Сила Кориолиса, вызванная вращением Земли, может быть замечена при наблюдении за движением маятника Фуко .

    На одноколейных железных дорогах поезда обычно ходят в обоих направлениях, поэтому последствия действия силы Кориолиса оказываются одинаковыми для обоих рельс. Иначе обстоят дела на двухколейных дорогах. На таких дорогах по каждой колее поезда движутся только в одном направлении, вследствие чего действие силы Кориолиса приводит к тому, что правые по ходу движения рельсы изнашиваются сильнее, чем левые. Очевидно, что в

    Земля - дважды неинерциальная система отсчета, поскольку она движется вокруг Солнца и вращается вокруг своей оси. На тела неподвижные, как было показано в 5.2, действует лишь центробежная сила. В 1829 г. французский физик Г. Кориолис 18 показал, что на движущееся тело действует еще одна сила инерции. Ее называют силой Кориолиса. Эта сила всегда перпендикулярна оси вращения и направлению скорости о.

    Появление кориолисовой силы можно обнаружить на следующем примере. Возьмем горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 5.3).

    Рис. 5.3.

    Запустим в направлении от О к А шарик со скоростью х>. Если диск не вращается, шарик должен катиться вдоль ОА. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться по кривой ОВ ч причем его скорость относительно диска быстро изменяет свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила?. е, перпендикулярная направлению движения шарика.

    Сила Кориолиса не является «настоящей» в смысле механики Ньютона. При рассмотрении движений относительно инерциальной системы отсчета такая сила вообще не существует. Она вводится искусствснно при рассмотрении движений в системах отсчета, вращающихся относительно инерциальных, чтобы придать уравнениям движения в таких системах формально такой же вид, что и в инерциальных системах отсчета.

    Чтобы заставить шарик катиться вдоль О А , нужно сделать направляющую, выполненную в виде ребра. При качении шарика направляющее ребро действует на него с некоторой силой. Относительно вращающейся системы (диска) шарик движется с постоянной но направлению скоростью. Это можно объяснить тем, что эта сила уравновешивается приложенной к шарику силой инерции

    здесь - сила Кориолиса , также являющаяся силой инерции; 1

    (О - угловая скорость вращения диска.

    Сила Кориолиса вызывает кориолисово ускорение. Выражение для этого ускорения имеет вид

    Ускорение направлено перпендикулярно векторам со и и и максимально, если относительная скорость точки о ортогональна угловой скорости со вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами со и о равен нулю или п либо если хотя бы один из этих векторов равен нулю.

    Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу.

    Таким образом, F. всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета.

    Влияние кориолисовых сил необходимо учитывать в ряде случаев при движении тел относительно земной поверхности. Например, при свободном падении тел на них действует кориолисова сила, обусловливающая отклонение к востоку от линии отвеса. Эта сила максимальна на экваторе и обращается в нуль на полюсах. Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силами инерции. Например, при выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу - в южном.

    ” Вывод формулы для расчета силы Кориолиса можно посмотреть на примере задачи 5.1.

    При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в восточном направлении.

    Возникновение некоторых циклонов в атмосфере Земли происходит в результате действия силы Кориолиса. В северном полушарии вес устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению.

    Сила Кориолиса действует на тело, движущееся вдоль меридиана , в северном полушарии вправо и в южном влево (рис. 5.4).

    Рис. 5.4.

    Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей.

    Силы Кориолиса проявляются и при качаниях маятника.

    В 1851 г. французский физик Ж. Фуко 19 установил в Пантеоне Парижа маятник массой 28 кг на тросе длиной 67 м (маятник Фуко). Такой же маятник массой 54 кг на тросе длиной 98 м недавно, к сожалению, был демонтирован в Исаакиевском соборе Санкт-Петербурга в связи с передачей собора в собственность церкви.

    Для простоты предположим, что маятник расположен на полюсе (рис. 5.5). На северном полюсе сила Кориолиса будет направлена вправо по ходу маятника. В итоге траектория движения маятника будет иметь вид розетки.

    Рис. 5.5.

    Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так: плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот.

    Таким образом, вращение плоскости качаний маятника Фуко дает непосредственное доказательство вращения Земли вокруг своей оси.

    Если тело удаляется от оси вращения, то сила F K направлена противоположно вращению и замедляет его.

    Если тело приближается к оси вращения, то F K направлена в сторону вращения.

    С учетом всех сил инерции уравнение Ньютона для неинерциаль- ной системы отсчета (5.1.2) примет вид

    где F bi = -та - сила инерции, обусловленная поступательным движением неинерциальной системы отсчета;

    * г 1 гг

    К». = та п и F fe =2w - две силы инерции, обусловленные вращательным движением системы отсчета;

    а - ускорение тела относительно неинерциальнои системы отсчета.