Оптические приборы с дифракционной решеткой. Дифракционная решетка

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.

ЦЕЛЬ РАБОТЫ : изучение принципа действия и основных характеристик спектральных приборов на примере спектроскопа на основе вогнутой дифракционной решетки.

ПРИНАДЛЕЖНОСТИ : ртутная лампа, конденсор, вогнутая дифракционная решетка, экран, линейка, оптическая скамья.

1. Вогнутая дифракционная решетка

Принцип действия вогнутой дифракционной решётки подробно рассмотрен в лабораторной работе «Дифракция Фраунгофера». Ниже будет рассмотрена дифракционная решётка именно как спектральный прибор.

Преимущество вогнутой дифракционной решетки заключается в том, что в ней удается совместить функции диспергирующего элемента и объектива, что позволяет использовать ее даже в далекой УФ области спектра, где применение стеклянной оптики невозможно.

При описании фокусирующего действия сферической решётки используют понятие меридиальной (проходящей через центры штрихов и центр кривизны решётки) и сагиттальной (перпендикулярной меридиальной) плоскостей. Фокусирующее действие сферической вогнутой решетки проиллюстрировано на рис.2.

Радиус кривизны решётки связан с углами падения и дифракциилучей и расстояниямиf 1 и f 2 следующими соотношениями:

для меридианального сечения:; (9)

для сагиттального сечения: (10)

Рис. 2. Фокусирующее действие вогнутой сферической решетки в меридианальном (-–) и сагиттальном (– –) сечениях; rрадиус кривизны решетки; f 1 и f 2 – расстояния от центра решётки до щели и спектра; y и j – углы падения и дифракции

Рис.3. Круг Роуланда

Если задать
, то для положения спектра получим
. В этом случае входная щель и спектр расположены на круге с диаметром, равным радиусу кривизны сферической поверхности. Этот круг называюткругом Роуланда (см. рис.3). Для вогнутой решетки справедливо условие главных максимумов (период решетки d отсчитывается по хорде):

Основными характеристиками вогнутой решётки являются: угловая и линейная дисперсия, разрешающая способность.

Угловая дисперсия – величина, показывающая, как меняется угол отклонения лучей при изменении длин волн. Продифференцировав выражение (11), получим соотношение для угловой дисперсии решетки:

Найдем линейную дисперсию вогнутой решётки. Будем отсчитывать координату l по дуге окружности круга Роуланда от центра решетки (рис.3). Т.к. угол дифракции вписан в окружность диаметра r, то j = p/2 - l/ r, а линейная дисперсия:

Разрешающая способность вогнутой решетки, как и плоской, определяется как отношение средней длины волны излучения к минимальной разнице длин волн, которую можно разрешить с помощью решетки и равно произведению максимального порядка спектра q на число рабочих штрихов N решетки:

R = q N (14)

Как и большинству элементов, изготовленных на основе сферических поверхностей, вогнутой решетке присущи искажения изображения - аберрации , наибольшее влияние из которых оказывает - астигматизм , который проявляется в различном фокусирующем действии решетки в меридианальной и сагиттальной плоскостях.

Астигматическое действие сферической дифракционной решетки определяется выражением, задающим удаление (f 2 + D) сагиттального фокуса от вершины решетки. При этом точка входной щели в спектре изображается вертикальным отрезком H , расположенным на круге Роуланда:

где L ш - рабочая высота штриха. Расстояние между горизонтальным и вертикальным фокальными отрезками, равное:

называется астигматической разностью . В идеальном случае отсутствия астигматизма D = 0.

Дифракционная решетка

Очень большая отражательная дифракционная решётка.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Виды решёток

  • Отражательные : Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете
  • Прозрачные : Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m =0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m =±1) максимуме можно наблюдать разложение света в спектр . Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .

Если известно число штрихов (N ), приходящихся на 1 мм решётки, то период решётки находят по формуле: 0,001 / N

Формула дифракционной решётки:

d - период решётки, α - угол максимума данного цвета, k - порядок максимума, λ - длина волны.

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .

Изготовление

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых "антибликовых" очках.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 3-е, стереотипное. - М .: Физматлит, МФТИ , 2002. - Т. IV. Оптика. - 792 с. - ISBN 5-9221-0228-1
  • Тарасов К. И., Спектральные приборы, 1968

См. также

  • Фурье-оптика

Wikimedia Foundation . 2010 .

Смотреть что такое "Дифракционная решетка" в других словарях:

    Оптический прибор; совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных полосок (штрихов), равноотстоящих друг от друга, на которых происходит дифракция света. Дифракционная решетка разлагает… … Большой Энциклопедический словарь

    ДИФРАКЦИОННАЯ РЕШЕТКА, пластина с нанесенными на нее параллельными линиями на равном расстоянии друг от друга (до 1500 на 1 мм), которая служит для получения СПЕКТРОВ при ДИФРАКЦИИ света. Трансмиссионные решетки прозрачные и расчерчиваются на… … Научно-технический энциклопедический словарь

    дифракционная решетка - Зеркальная поверхность с нанесенными на нее микроскопическими параллельными линиями, прибор, разделяющий (подобно призме) падающий на него свет на составные цвета видимого спектра. Тематики информационные технологии в …

    дифракционная решетка - difrakcinė gardelė statusas T sritis Standartizacija ir metrologija apibrėžtis Optinis periodinės sandaros įtaisas difrakciniams spektrams gauti. atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Оптический прибор, совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных штрихов (полосок), равноотстоящих друг от друга, на которых происходит дифракция света. Д.Р. разлагает падающий на нее свет в… … Астрономический словарь

    дифракционная решетка (в оптических линиях связи) - дифракционная решетка Оптический элемент с периодической структурой, отражающий (или пропускающий) свет под одним или несколькими разными углами, зависящими от длины волны. Основу составляют периодически повторяющиеся изменения показателя… … Справочник технического переводчика

    вогнутая спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовленная на вогнутой оптической поверхности. Примечание Вогнутые спектральные дифракционные решетки бывают сферическими и асферическими. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    голограммная спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовления регистрацией на чувствительном к излучению материале интерференционной картины от двух и более когерентных пучков. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    нарезная спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовленная нанесением штрихов на делительной машине. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    отражательная спектральная дифракционная решетка - Спектральная дифракционная решетка, выполняющая функции диспергирующего элемента в отраженном от нее оптическом излучении. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

Книги

  • Комплект таблиц. Геометрическая и волновая оптика (18 таблиц) , Учебный альбом из 12 листов. Артикул - 5-8670-018. Принцип Гюйгенса. Отражение волн. Изображение предмета в плоском зеркале. Преломление света. Полное внутреннее отражение. Дисперсия… Категория:

Общие сведения

Рассмотрим более подробно теорию вогнутой дифракционной решётки. Направления главных максимумов интерференции пучков, дифрагированных на вогнутой решётке, определяются формулой, аналогичной для плоской отражательной решётки

где - число штрихов на мм; - угол падения луча АО (”нулевого луча”) на решётку; - угол дифракции для этого луча. Можно доказать, что кривая фокусировки пучков, дифрагированных на вогнутой решётке, является окружностью с радиусом, равному половине радиуса кривизны решётки (окружность Роуланда).

Формула (1) определяет направление луча дифрагированного в вершине О вогнутой решётки - “нулевого” дифрагированного луча (см. рис. 3.1). Для лучей той же длины, исходящих из той же точки А, но падающих на другие участки поверхности решётки углы и будут иными, и, в общем случае, дифрагированные лучи (то есть направления интерференционных максимумов различных пучков) не сходятся в одной точке. Это значит, что вогнутая решётка обладает аберрациями.

Разрешающая способность вогнутой решётки даётся формулой:

где - ширина решётки, - порядок спектра (в нашем случае =1), - число штрихов на единицу длины. Однако, увеличить разрешающую способность вогнутой решётки путём увеличения ширины не удастся, так как существует оптимальная ширина вогнутой решётки. Она определяется как максимальная ширина вогнутой решётки, при которой её разрешающая способность не уступает плоской решётке. Для каждой длины волны л можно указать размер решётки при котором она обладает максимальной возможной разрешающеё способностью. При дальнейшем увеличении размеров решётки разрешающая способность падает. Можно показать , что

Например, для решётки, обладающей следующими параметрами: R=1м, =26є, =0є и используемой в области л=200 нм получаем?5см.

Нормальная ширина щели

Каждая дифракционная решётка характеризуется своей аппаратной функцией, то есть зависимостью ширины изображения входной щели от ширины самой щели. Интересно найти зависимость ширины изображения щели от ширины входной щели. В такая зависимость найдена (см. рис.3.2). Пропорциональность между и наблюдается лишь при широких щелях. Уменьшение приводит к уменьшению лишь до определённых значений ширин. При дальнейшем уменьшении ширины щели (<) ширина изображения остаётся постоянной и происходит лишь уменьшение освещённости изображения. Величина называется нормальной шириной входной щели. Нормальная ширина щели это такая величина входной щели, когда её геометрическое изображение в фокальной плоскости прибора равно центральной части главного дифракционного максимума в этой же плоскости. При ширине щели меньше нормальной, изображение, образующееся в фокальной плоскости уже не является собственно изображением входной щели, а определяется дифракцией на апертурной диафрагме спектрального прибора. Нормальная ширина входной щели определяется параметрами прибора и равна

где -фокусное расстояние коллимирующего объектива (радиус кривизны вогнутой дифракционной решётки), - ширина диафрагмы (высота вогнутой дифракционной решётки). Ширина изображения щели не может стать меньше дифракционного предела. Поэтому, стремясь получить линии как можно тоньше, бесполезно использовать входную щель меньше нормальной.

Оценим для решёток МФС-8 и ВМК-1:

1) МФС-8: =30мм, =1м, . Тогда =6,7 мкм

2) ВМК-1: =50мм, =1м, . Тогда =4 мкм

То есть, для того, чтобы не потерять в интенсивности линий нужно брать ширину входной щели заведомо больше, например 15 мкм.